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Diophantine equations

Mathematicians working on
Diophantine equations study the
integer solutions to polynomial
equations with integer coefficients.

E.g. the Pythagorean equation a2 + b2 = c2 has the integer solution
a = 3, b = 4, c = 5.
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Hilbert’s 10th problem

Problem 10 (Hilbert, 1900)

Construct an algorithm which can decide whether
any given Diophantine equation has a solution.
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Hilbert’s 10th problem

Theorem (Matiyasevich, Robinson, Davis, Putnam, 1970)

No such algorithm exists.

Question

Hilbert’s 10th problem over Q?

Wide open.
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Searching for rational points
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Proving no rational points exist

Let X/Q be an algebraic variety.

X (Q) ⊂ X (R)

so
X (R) = ∅ =⇒ X (Q) = ∅.

X (R) is easier to deal with than X (Q) because R is complete.
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The real world is not enough

But
X (R) 6= ∅ 6=⇒ X (Q) 6= ∅.

E.g. x2 = 2 has real solutions but no rational solutions.

R is not the only completion of Q.

The other completions are Qp, for p prime.

X (Q) ⊂ X (Qp)

so
X (Qp) = ∅ =⇒ X (Q) = ∅.

Idea: use all the completions of Q at once.
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The Hasse principle

Let X/Q be a nice variety.

X (Q) ⊂ X (R)×
∏
p

X (Qp) =: X (AQ) adelic points

Q 7→ (Q,Q,Q,Q,Q, . . . )

X (Q) 6= ∅ =⇒ X (AQ) 6= ∅

Definition

If “⇐= ” holds, we say the Hasse principle holds.
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Part I

What causes failures of the
Hasse principle?
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Brauer–Manin obstructions

Manin, 1970: Let BrX = H2
ét(X ,Gm). There’s a pairing

X (AQ)× BrX → Q/Z

such that X (Q) ⊂ X (AQ)Br := adelic points orthogonal to BrX .

Suppose X (AQ) 6= ∅ but X (AQ)Br = ∅. Then X (Q) = ∅.
Brauer–Manin obstruction to the Hasse principle
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Weak approximation

Weak approximation holds if X (Q) is dense in X (AQ).

We have
X (Q) ⊂ X (AQ)Br ⊂ X (AQ).

If X (AQ)Br 6= X (AQ) then X (Q) 6= X (AQ).
Brauer–Manin obstruction to weak approximation
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The Brauer–Manin pairing

The Brauer–Manin pairing is given by

X (AQ)× BrX → Q/Z

((Qp)p , A) 7→
∑
p≤∞
A(Qp)

Let X (AQ)A denote the set of adelic points orthogonal to A ∈ BrX .

Lemma

If |A| : X (Qv )→ Q/Z,Qv 7→ A(Qv ), is non-constant for some v then
X (AQ)A 6= X (AQ), i.e. A obstructs weak approximation.

Proof.

Let (Pw )w ∈ X (AQ). If
∑

w A(Pw ) = 0 then replace Pv with some Qv

such that A(Qv ) 6= A(Pv ).
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The Brauer group

The Brauer group has two parts:

Br1 X = ker(BrX → BrX ) “algebraic part” – easy to calculate

BrX/Br1 X “transcendental part” – difficult to calculate, mostly
unknown
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Transcendental Brauer group calculations

Conic bundles over P2 (Artin–Mumford, 1972)

Diagonal quartic surfaces ax4 + by4 + cz4 + dw4 = 0 over Q
(Ieronymou–Skorobogatov, 2014)

Products E × E of CM elliptic curves (N., 2016)

Non-diagonal quartic surfaces ax4 + bxy3 + czw3 + dz4 = 0 over Q
(Alaa Tawfik–N., work in progress)
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Example of a transcendental Brauer–Manin obstruction

Theorem (Alaa Tawfik–N., to appear)

Let X/Q be a Kummer surface with affine equation

w2 = (x3 + c)(t3 + d).

BrX contains a transcendental element of order 5 ⇐⇒ 80cd ∈ Q(ζ3)×6.

Moreover, such an element always obstructs weak approximation.

Uses work of Ieronymou–Skorobogatov where they obtain similar results
for diagonal quartic surfaces.
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How do the evaluation maps vary on p-adic discs?

Let Qp ∈ X (Qp).

If A has order coprime to p then A(Qp) only depends on Qp mod p.

If A has order pn then A(Qp) could depend on Qp mod p2 or modp3

etc.
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Wild evaluation maps

Bright–N., 2020

For A ∈ BrX of order pn, we:

calculate m such that A(Qp)
only depends on Qp mod pm

show that A(Qp) varies linearly
on discs of points that are the
same mod pm−1

if p | m, can get quadratic
variation on larger discs
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Which primes can be involved in the Brauer–Manin
obstruction?

Let A ∈ BrX .

Question (Swinnerton-Dyer, 2010)

Suppose that Pic X̄ is torsion-free. Let p be a prime of good reduction for
X (i.e. X mod p is smooth). Is A(Qp) constant as Qp varies in X (Qp)?

Equivalently, let S = {primes of bad reduction} ∪ {∞}. Does

X (AQ)Br = Z ×
∏
p/∈S

X (Qp),

where Z ⊂∏
p∈S X (Qp)?

Does the Brauer–Manin obstruction involve only primes of bad
reduction and infinite primes?
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Which primes can be involved in the Brauer–Manin
obstruction?

Theorem (Bright–N., 2020)

If H0(X ,Ω2
X ) 6= 0 then every prime of good ordinary reduction is involved

in a Brauer–Manin obstruction over some finite extension of the base field.

Consequence:

The answer to Swinnerton-Dyer’s
question is no in general for K3
surfaces over number fields.

Image by Alessandra Sarti.
1 + x4 + y4 + z4 + a(x2 + y2 + z2 + 1)2 = 0, a = −0.49
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Which primes can be involved in the Brauer–Manin
obstruction?

Question

Suppose Pic X̄ is torsion-free. Is there a finite set S of primes that can be
involved in the Brauer–Manin obstruction for X? Can we describe S?
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Which primes can be involved in the Brauer–Manin
obstruction?

Theorem (Bright–N., 2020)

Suppose Pic X̄ is torsion-free. Then the finite set S consists of:

primes of bad reduction;

infinite primes;

even primes;

ramified primes;

primes for which H0(X mod p,Ω1) 6= 0 (not needed if X is a K3
surface).

E.g. for a K3 surface over Q, the relevant primes are

{primes of bad reduction} ∪ {2,∞}.
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Part II

How often does the Hasse
principle fail?
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How often does the Hasse principle fail?

Family Proportion of failures
y2 + z2 = (at2 + b)(ct2 + d) 0%

(de la Bretèche–Browning, 2013)

Hyperelliptic curves > 0% for g = 1,
z2 = a0x

2g+2 + a1x
2g+1y + · · ·+ a2g+2y

2g+2 > 50% for g ≥ 2,
(Bhargava, 2013) > 99% for g ≥ 10

Plane cubics > 0%
(Bhargava, 2014) conjecturally 1− 1/3
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Norm one tori

Let L = Q(ω), degree d extension. The norm one torus for L/Q is the
affine variety

TL/Q : NL/Q(x0 + x1ω + · · ·+ xd−1ω
d−1) = 1.

Its torsors are the affine varieties

TL/Q,α : NL/Q(x0 + x1ω + · · ·+ xd−1ω
d−1) = α.

for α ∈ Q×.
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Local and global points

TL/Q,α : NL/Q(x0 + x1ω + · · ·+ xd−1ω
d−1) = α

TL/Q,α(Q) 6= ∅ ⇐⇒ α is in the image of NL/Q : L→ Q.

TL/Q,α(Qp) 6= ∅ ⇐⇒ α is in the image of NL/Q : L⊗Qp → Qp.

TL/Q,α(R) 6= ∅ ⇐⇒ α is in the image of NL/Q : L⊗ R→ R.
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Local and global points

Example

L = Q(i), α = −2.

NL/Q(x + yi) = (x + yi)(x − yi) = x2 + y2 = −2

L⊗ R = R(i) = C. Image of NL/Q : C× → R× is R>0.

No real solution =⇒ no rational (or “global”) solution.
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Local and global points

If α 6= 0 is in the image of NL/Q : L→ Q, say

“α is a global norm from L/Q”.

If α 6= 0 is in the image of NL/Q : L⊗ R→ R and in the image of
NL/Q : L⊗Qp → Qp for all p, say

“α is an everywhere local norm from L/Q”.

{global norms from L/Q} ⊂ {everywhere local norms from L/Q}.
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The Hasse norm principle

X(TL/Q) =
{everywhere local norms from L/Q}

{global norms from L/Q}

If X(TL/Q) = 1 then the Hasse principle holds for all TL/Q,α and we
say the Hasse norm principle holds for L/Q.

If X(TL/Q) 6= 1 then there are rational numbers α which are
everywhere locally norms from L/Q but not global norms.
The Hasse principle fails for these TL/Q,α.
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How often does the Hasse principle fail?

Family Proportion of failures
y2 + z2 = (at2 + b)(ct2 + d) 0%

(de la Bretèche–Browning, 2013)

Hyperelliptic curves > 0% for g = 1,
z2 = a0x

2g+2 + a1x
2g+1y + · · ·+ a2g+2y

2g+2 > 50% for g ≥ 2,
(Bhargava, 2013) > 99% for g ≥ 10

Plane cubics > 0%
(Bhargava, 2014) conjecturally 1− 1/3

Torsors for a norm one torus T/Q
(Browning–N., 2016) 1− 1/|X(T )|
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Statistics of the Hasse norm principle

Let G be a finite abelian group.

A G -extension is a Galois extension with Galois group G .

Theorem (Frei–Loughran–N., 2018)

When ordered by conductor, 100% of G -extensions satisfy the Hasse norm
principle.

We used this to give an asymptotic formula for the number of
G -extensions from which a given element α is a norm.
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S4-quartics with prescribed norms

Let α ∈ Q×.

Write N(B) for the number of S4-quartic extensions L/Q with
discriminant at most B.

Write N(B;α) for the number of such extensions with α ∈ NL/Q(L×).

Theorem (Monnet, 2022)

0 < lim
B→∞

N(B;α)

N(B)
≤ 1,

with equality if and only if α ∈ Q×4.
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Statistics of the Hasse norm principle for non-abelian
extensions

Theorem (N.–Varma, in preparation)

The Hasse norm principle holds for 100% of S4-octics.

F12 = {Degree 12 S4-fields fixed by a double transposition}.
The behaviour in this family is strikingly different from that of S4-octics.

Theorem (N.–Varma, in preparation)

The Hasse norm principle fails for a positive proportion of fields in F12.

Thank you for your attention.
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